Specifies the properties of the object that implements the reduced Bayesian model.
The model infers the mean of the outcome-generating distribution according to change-point probability and
relative uncertainty.
Source code in rbmpy/agent_rbm/AgentRbm.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186 | class AlAgent:
"""Specifies the properties of the object that implements the reduced Bayesian model.
The model infers the mean of the outcome-generating distribution according to change-point probability and
relative uncertainty.
"""
def __init__(self, agent_vars: "AgentVars"):
"""Creates an agent object of class AlAgent based on the agent initialization input.
Parameters
----------
agent_vars : AgentVars
Initialization object instance.
"""
# Set variable task properties based on input
self.s = agent_vars.s
self.h = agent_vars.h
self.u = agent_vars.u
self.q = agent_vars.q
self.sigma = agent_vars.sigma
self.sigma_t_sq = agent_vars.sigma_0
self.sigma_H = agent_vars.sigma_H
self.tau_t = agent_vars.tau_0
self.omega_t = agent_vars.omega_0
self.mu_t = agent_vars.mu_0
self.max_x = agent_vars.max_x
self.circular = agent_vars.circular
# Initialize variables
self.a_t = np.nan # belief update
self.alpha_t = np.nan # learning rate
self.tot_var = np.nan # total uncertainty
self.C = np.nan # term related to catch-trial helicopter cue
# Futuretodo: Create sub-functions as in sampling agent
def learn(
self, delta_t: float, b_t: float, v_t: int, mu_H: float, high_val: int
) -> None:
"""Implements the inference of the reduced Bayesian model.
Parameters
----------
delta_t : float
Current prediction error.
b_t : float
Last prediction of participant.
v_t : int
Helicopter visibility.
mu_H : float
True helicopter location.
high_val : int
High-value index.
Returns
-------
None
This function does not return any value.
futuretodo:
use "mypy" typechecker
use getters
"""
if np.isnan(delta_t):
# Ensure that delta is not NaN so that model is not accidentally applied to wrong data
sys.exit("delta_t is NaN")
# Update variance of predictive distribution
self.tot_var = self.sigma**2 + self.sigma_t_sq
# Compute change-point probability
# --------------------------------
# Likelihood of prediction error given that change point occurred: (1/max_x)^s * h
term_1 = ((1 / self.max_x) ** self.s) * self.h
# Likelihood of prediction error given that no change point occurred:
# (N(delta_t; 0,sigma^2_t + sigma^2))^s * (1-h)
if self.circular:
kappa = 1 / self.tot_var
term_2 = (vonmises.pdf(delta_t, kappa) ** self.s) * (1 - self.h)
else:
term_2 = (norm.pdf(delta_t, 0, np.sqrt(self.tot_var)) ** self.s) * (
1 - self.h
)
# Compute change-point probability
self.omega_t = safe_div(term_1, (term_2 + term_1))
# Compute learning rate and update belief
# ---------------------------------------
self.alpha_t = self.omega_t + self.tau_t - self.tau_t * self.omega_t
# Add reward bias to learning rate and correct for learning rates > 1 and < 0
self.alpha_t = self.alpha_t + self.q * high_val
if self.alpha_t > 1.0:
self.alpha_t = 1.0
elif self.alpha_t < 0.0:
self.alpha_t = 0.0
# Set model belief equal to last prediction of participant to estimate model using subjective prediction errors
self.mu_t = b_t
# hat{a_t} := alpha_t * delta_t
self.a_t = self.alpha_t * delta_t
# mu_{t+1} := mu_t + hat{a_t}
self.mu_t = self.mu_t + self.a_t
if self.circular:
# Wrap mu_t around circle
self.mu_t = self.mu_t % self.max_x
# On catch trials, take true mean into consideration
# --------------------------------------------------
if v_t:
if self.sigma_H == 0.0:
# Ensure that sigma_H is not zero
sys.exit("sigma_H equals 0")
# Compute weight of true mean
# w_t := sigma_t^2 / (sigma_t^2 + sigma_H^2)
w_t = self.sigma_t_sq / (self.sigma_t_sq + self.sigma_H**2)
# Compute mean of inferred distribution with additional mean information
# mu_t = (1 - w_t) * mu_{t+1} + w_t * mu_H
if self.circular:
self.mu_t = circ_mean(
alpha=np.array([self.mu_t, mu_H]), w=np.array([1 - w_t, w_t])
)
else:
self.mu_t = (1 - w_t) * self.mu_t + w_t * mu_H
# Recompute the model's update under consideration of the catch-trial information
# \hat{a}_t = mu_{t+1} - b_t, same as in data preprocessing
if self.circular:
self.a_t = circ_dist(self.mu_t, b_t)
else:
self.a_t = self.mu_t - b_t
# Compute mixture variance of the two distributions...
# C := 1 / ((1/sigma_t^2) + (1/sigma_H^2))
term_1 = safe_div(1, self.sigma_t_sq)
term_2 = safe_div(1, self.sigma_H**2)
self.C = safe_div(1, term_1 + term_2)
# ...and update relative uncertainty accordingly
# tau_t = C / (C + sigma^2)
self.tau_t = safe_div(self.C, self.C + self.sigma**2)
# futuretodo: test model that does not update tau_t
# after catch trial, but keep in mind subjects don't
# perfectly trust the cue
# Update relative uncertainty of the next trial
# ---------------------------------------------
# Update estimation uncertainty:
# sigma_{t+1}^2 := (omega_t * sigma^2
# + (1-omega_t) * tau_t * sigma^2
# + omega_t * (1 - omega_t) * (delta_t * (1 - tau_t))^2) / exp(u)
# Note that u is already in exponential form
term_1 = self.omega_t * (self.sigma**2)
term_2 = (1 - self.omega_t) * self.tau_t * (self.sigma**2)
term_3 = self.omega_t * (1 - self.omega_t) * ((delta_t * (1 - self.tau_t)) ** 2)
self.sigma_t_sq = safe_div((term_1 + term_2 + term_3), self.u)
# Update relative uncertainty:
# tau_{t+1} := sigma_{t+1}^2 / (sigma_{t+1}^2 + sigma^2)
self.tau_t = safe_div(self.sigma_t_sq, (self.sigma_t_sq + self.sigma**2))
|
__init__(agent_vars)
Creates an agent object of class AlAgent based on the agent initialization input.
Parameters:
| Name |
Type |
Description |
Default |
agent_vars
|
AgentVars
|
Initialization object instance.
|
required
|
Source code in rbmpy/agent_rbm/AgentRbm.py
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 | def __init__(self, agent_vars: "AgentVars"):
"""Creates an agent object of class AlAgent based on the agent initialization input.
Parameters
----------
agent_vars : AgentVars
Initialization object instance.
"""
# Set variable task properties based on input
self.s = agent_vars.s
self.h = agent_vars.h
self.u = agent_vars.u
self.q = agent_vars.q
self.sigma = agent_vars.sigma
self.sigma_t_sq = agent_vars.sigma_0
self.sigma_H = agent_vars.sigma_H
self.tau_t = agent_vars.tau_0
self.omega_t = agent_vars.omega_0
self.mu_t = agent_vars.mu_0
self.max_x = agent_vars.max_x
self.circular = agent_vars.circular
# Initialize variables
self.a_t = np.nan # belief update
self.alpha_t = np.nan # learning rate
self.tot_var = np.nan # total uncertainty
self.C = np.nan # term related to catch-trial helicopter cue
|
learn(delta_t, b_t, v_t, mu_H, high_val)
Implements the inference of the reduced Bayesian model.
Parameters:
| Name |
Type |
Description |
Default |
delta_t
|
float
|
Current prediction error.
|
required
|
b_t
|
float
|
Last prediction of participant.
|
required
|
v_t
|
int
|
|
required
|
mu_H
|
float
|
True helicopter location.
|
required
|
high_val
|
int
|
|
required
|
Returns:
| Name | Type |
Description |
|
None
|
This function does not return any value.
|
futuretodo |
None
|
|
|
use "mypy" typechecker
|
|
|
use getters
|
|
Source code in rbmpy/agent_rbm/AgentRbm.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186 | def learn(
self, delta_t: float, b_t: float, v_t: int, mu_H: float, high_val: int
) -> None:
"""Implements the inference of the reduced Bayesian model.
Parameters
----------
delta_t : float
Current prediction error.
b_t : float
Last prediction of participant.
v_t : int
Helicopter visibility.
mu_H : float
True helicopter location.
high_val : int
High-value index.
Returns
-------
None
This function does not return any value.
futuretodo:
use "mypy" typechecker
use getters
"""
if np.isnan(delta_t):
# Ensure that delta is not NaN so that model is not accidentally applied to wrong data
sys.exit("delta_t is NaN")
# Update variance of predictive distribution
self.tot_var = self.sigma**2 + self.sigma_t_sq
# Compute change-point probability
# --------------------------------
# Likelihood of prediction error given that change point occurred: (1/max_x)^s * h
term_1 = ((1 / self.max_x) ** self.s) * self.h
# Likelihood of prediction error given that no change point occurred:
# (N(delta_t; 0,sigma^2_t + sigma^2))^s * (1-h)
if self.circular:
kappa = 1 / self.tot_var
term_2 = (vonmises.pdf(delta_t, kappa) ** self.s) * (1 - self.h)
else:
term_2 = (norm.pdf(delta_t, 0, np.sqrt(self.tot_var)) ** self.s) * (
1 - self.h
)
# Compute change-point probability
self.omega_t = safe_div(term_1, (term_2 + term_1))
# Compute learning rate and update belief
# ---------------------------------------
self.alpha_t = self.omega_t + self.tau_t - self.tau_t * self.omega_t
# Add reward bias to learning rate and correct for learning rates > 1 and < 0
self.alpha_t = self.alpha_t + self.q * high_val
if self.alpha_t > 1.0:
self.alpha_t = 1.0
elif self.alpha_t < 0.0:
self.alpha_t = 0.0
# Set model belief equal to last prediction of participant to estimate model using subjective prediction errors
self.mu_t = b_t
# hat{a_t} := alpha_t * delta_t
self.a_t = self.alpha_t * delta_t
# mu_{t+1} := mu_t + hat{a_t}
self.mu_t = self.mu_t + self.a_t
if self.circular:
# Wrap mu_t around circle
self.mu_t = self.mu_t % self.max_x
# On catch trials, take true mean into consideration
# --------------------------------------------------
if v_t:
if self.sigma_H == 0.0:
# Ensure that sigma_H is not zero
sys.exit("sigma_H equals 0")
# Compute weight of true mean
# w_t := sigma_t^2 / (sigma_t^2 + sigma_H^2)
w_t = self.sigma_t_sq / (self.sigma_t_sq + self.sigma_H**2)
# Compute mean of inferred distribution with additional mean information
# mu_t = (1 - w_t) * mu_{t+1} + w_t * mu_H
if self.circular:
self.mu_t = circ_mean(
alpha=np.array([self.mu_t, mu_H]), w=np.array([1 - w_t, w_t])
)
else:
self.mu_t = (1 - w_t) * self.mu_t + w_t * mu_H
# Recompute the model's update under consideration of the catch-trial information
# \hat{a}_t = mu_{t+1} - b_t, same as in data preprocessing
if self.circular:
self.a_t = circ_dist(self.mu_t, b_t)
else:
self.a_t = self.mu_t - b_t
# Compute mixture variance of the two distributions...
# C := 1 / ((1/sigma_t^2) + (1/sigma_H^2))
term_1 = safe_div(1, self.sigma_t_sq)
term_2 = safe_div(1, self.sigma_H**2)
self.C = safe_div(1, term_1 + term_2)
# ...and update relative uncertainty accordingly
# tau_t = C / (C + sigma^2)
self.tau_t = safe_div(self.C, self.C + self.sigma**2)
# futuretodo: test model that does not update tau_t
# after catch trial, but keep in mind subjects don't
# perfectly trust the cue
# Update relative uncertainty of the next trial
# ---------------------------------------------
# Update estimation uncertainty:
# sigma_{t+1}^2 := (omega_t * sigma^2
# + (1-omega_t) * tau_t * sigma^2
# + omega_t * (1 - omega_t) * (delta_t * (1 - tau_t))^2) / exp(u)
# Note that u is already in exponential form
term_1 = self.omega_t * (self.sigma**2)
term_2 = (1 - self.omega_t) * self.tau_t * (self.sigma**2)
term_3 = self.omega_t * (1 - self.omega_t) * ((delta_t * (1 - self.tau_t)) ** 2)
self.sigma_t_sq = safe_div((term_1 + term_2 + term_3), self.u)
# Update relative uncertainty:
# tau_{t+1} := sigma_{t+1}^2 / (sigma_{t+1}^2 + sigma^2)
self.tau_t = safe_div(self.sigma_t_sq, (self.sigma_t_sq + self.sigma**2))
|